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Abstract

Distributional reinforcement learning (DRL) has achieved empirical success in
various domains. One core task in the field of DRL is distributional policy evalua-
tion, which involves estimating the return distribution ηπ for a given policy π. The
distributional temporal difference learning has been accordingly proposed, which
is an extension of the temporal difference learning (TD) in the classic RL area.
In the tabular case, Rowland et al. [2018] and Rowland et al. [2024a] proved the
asymptotic convergence of two instances of distributional TD, namely categori-
cal temporal difference learning (CTD) and quantile temporal difference learning
(QTD), respectively. In this paper, we go a step further and analyze the finite-
sample performance of distributional TD. To facilitate theoretical analysis, we
propose non-parametric distributional temporal difference learning (NTD). For a
γ-discounted infinite-horizon tabular Markov decision process, we show that for

NTD we need Õ
(

1
ε2p(1−γ)2p+1

)
iterations to achieve an ε-optimal estimator with

high probability, when the estimation error is measured by the p-Wasserstein dis-
tance. This sample complexity bound is minimax optimal up to logarithmic fac-
tors in the case of the 1-Wasserstein distance. To achieve this, we establish a novel
Freedman’s inequality in Hilbert spaces, which would be of independent interest.
In addition, we revisit CTD, showing that the same non-asymptotic convergence
bounds hold for CTD in the case of the p-Wasserstein distance for p ≥ 1.

1 Introduction

In high-stake applications of reinforcement learning (RL), such as healthcare [Lavori and Dawson,
2004, Böck et al., 2022] and finance[Ghysels et al., 2005], only considering the mean of returns is
insufficient. It is necessary to take risk and uncertainties into consideration. Distributional reinforce-
ment learning (DRL) Morimura et al. [2010], Bellemare et al. [2017, 2023] addresses such issues by
modeling the complete distribution of returns instead of their expectations.

In the field of DRL, one of the most fundamental tasks is to estimate the return distribution ηπ for
a given policy π, which is referred to as distributional policy evaluation. Distributional temporal
difference learning (TD) is probably the most widely-used approach for solving the distributional
policy evaluation problem. A key aspect of implementing a distributional TD algorithm is how
to represent the return distribution, an infinite-dimensional object, via a computationally feasible
finite-dimensional parametrization. This has led to the development of two special instances of dis-
tributional TD: categorical temporal difference learning (CTD) [Bellemare et al., 2017] and quantile
temporal difference learning (QTD) [Dabney et al., 2018]. These algorithms provide computation-
ally tractable parametrizations and updating schemes of the return distribution.
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Previous theoretical works have primarily focused on the asymptotic behaviors of distributional TD.
In particular, Rowland et al. [2018] and Rowland et al. [2024a] showed the asymptotic convergences
of CTD and QTD in the tabular case, respectively. A natural question arises: can we depict the sta-
tistical efficiency of distributional TD by non-asymptotic results similar to the classic TD algorithm
[Li et al., 2024]?

1.1 Contributions

In this paper, we manage to answer the above question affirmatively in the synchronous setting
[Kakade, 2003, Kearns et al., 2002]. Firstly, we introduce non-parametric distributional temporal
difference learning (NTD) in Section 3, which is not practical but aids theoretical understanding.

We show that Õ
(

1
ε2p(1−γ)2p+1

)
4 iterations are sufficient to yield an estimator η̂π, such that the

p-Wasserstein metric between η̂π and ηπ is less than ε with high probability (Theorem 4.1). This
bound is minimax optimal (Theorem B.1) in the 1-Wasserstein metric case, if we neglect all loga-
rithmic terms. Next, we revisit the more practical CTD, and show that, in terms of the p-Wasserstein
metric, CTD and NTD have the same non-asymptotic convergence bounds (Theorem 4.2). It is
worth pointing out that to attain such tight bounds in Theorem 4.1, we establish a Freedman’s in-
equality in Hilbert spaces (Theorem A.2). We would believe it is of independent interest beyond the
current work.

1.2 Related Work

Non-asymptotic results of DRL. Recently, there has been an emergence of work focusing on
finite-sample/iteration results of the distributional policy evaluations.

Wu et al. [2023] studied the offline distributional policy evaluation problem. They solved the prob-
lem via fitted likelihood estimation (FLE) inspired by the classic offline policy evaluation algorithm
fitted Q evaluation (FQE), and provided a generalization bound in the p-Wasserstein metric case.

Zhang et al. [2023] proposed to solve distributional policy evaluation by the model-based ap-

proach and derived corresponding sample complexity bounds, namely Õ
(

1
ε2p(1−γ)2p+2

)
in the

p-Wasserstein metric case, and Õ
(

1
ε2(1−γ)4

)
in both the Kolmogorov-Smirnov metric and total

variation metric under different conditions. Rowland et al. [2024b] proposed direct categorical fixed-
point computation (DCFP), a model-based version of CTD, in which they constructed the estimator
by solving a linear system directly instead of performing an iterative algorithm. They showed that

the sample complexity of DCFP is Õ
(

1
ε2(1−γ)3

)
in the 1-Wasserstein metric case by introducing

the novel stochastic categorical CDF Bellman operator and equation. Their result matches the mini-

max lower bound (up to logarithmic factors) Ω̃
(

1
ε2(1−γ)3

)
proposed in [Zhang et al., 2023], which

implies that learning the full return distribution can be as sample-efficient as learning just its expecta-
tion. It’s worth noting that the algorithms analyzed in both [Zhang et al., 2023] and [Rowland et al.,
2024b] are model-based, hence they are less similar to practical algorithms. While distributional
TD analyzed in this paper, as a model-free method, is more practical, and also involves a more
complicated theoretical analysis.

Böck and Heitzinger [2022] also considered model-free method. They proposed speedy categorical
policy evaluation (SCPE), which can be regarded as CTD with an additional acceleration term. They

showed that the sample complexity of SCPE is Õ
(

1
ε2(1−γ)4

)
in the 1-Wasserstein metric case.

Compared to [Böck and Heitzinger, 2022], our work shows that even if we do not introduce any
acceleration techniques to the original CTD algorithm, it is still possible to attain the near-minimax
optimal sample complexity bounds. Thus, we give sharper bounds based on a simpler algorithm.

Table 1 gives more detailed comparisons of sample complexity with the previous work in the 1-
Wasserstein metric. Note that solving distributional policy evaluation can also address the traditional

4Throughout this paper, the notation f(·) = Õ (g(·)) (f(·) = Ω̃ (g(·))) means that f(·) is order-wise no
larger (smaller) than g(·), ignoring logarithmic factors poly(log |S| , log |A| , log( 1

1−γ
), log( 1

ε
), log( 1

δ
)), as

|S| , |A| , 1

1−γ
, 1

ε
, 1

δ
→ ∞ .
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Sample Complexity Algorithms Task

[Gheshlaghi Azar et al., 2013] Õ
(

1
ε2(1−γ)3

)
Model-based PE

[Li et al., 2024] Õ
(

1
ε2(1−γ)3

)
TD (Model-free) PE

[Rowland et al., 2018] Asymptotic CTD (Model-free) DPE

[Rowland et al., 2024a] Asymptotic QTD (Model-free) DPE

[Rowland et al., 2024b] Õ
(

1
ε2(1−γ)3

)
DCFP (Model-based) DPE

[Böck and Heitzinger, 2022] Õ
(

1
ε2(1−γ)4

)
SCPE (Model-free) DPE

Our Work Õ
(

1
ε2(1−γ)3

)
CTD (Model-free) DPE

Table 1. Sample complexity of algorithms for solving policy evaluation (PE) in the ℓ∞ norm, and
distributional policy evaluation (DPE) in the supreme 1-Wasserstein metric.

policy evaluation task by taking expectation of the return distribution estimator. And the supreme
1-Wasserstein metric error of the return distribution estimator is not smaller than the ℓ∞ error of the
induced value function estimator (see the proof of Theorem B.1 in Appendix B), we have also listed
the sample complexity of the policy evaluation task in Table 1 for comparison.

Freedman’s inequality. Freedman’s inequality was originally proposed in [Freedman, 1975]. It
can be viewed as a Bernstein’s inequality for martingales, which is crucial for analyzing stochastic
approximation algorithms. Tropp [2011] generalized Freedman’s inequality to matrix martingales.
And Talebi et al. [2022] established Freedman inequalities for martingales in the setting of noncom-
mutative probability spaces. To the best of our knowledge, we are the first to present a concrete
version of Freedman’s inequality in Hilbert spaces.

The remainder of this paper is organized as follows. In Section 2, we introduce some background
of DRL and state Freedman’s inequality in Hilbert spaces. In Section 3, we revisit distributional
TD and propose NTD for further theoretical analysis. In Section 4, we analyze the non-asymptotic
convergence bounds of NTD and CTD. Section 5 presents proof outlines of our theoretical results,
and Section 6 concludes our work. We put the detailed results with Freedman’s inequality in Hilbert
spaces in Appendix A, and the minimax lower bound of the distributional policy evaluation task in
Appendix B.

2 Background

An infinite-horizon tabular Markov decision process (MDP) is defined by a 5-tuple M =
〈S,A,PR, P, γ〉, where S represents a finite state space, A a finite action space, PR the distri-
bution of rewards, P the transition dynamics, i.e., PR(·|s, a) ∈ ∆([0, 1]), P (·|s, a) ∈ ∆(S) for any
state action pair (s, a) ∈ S × A, and γ ∈ (0, 1) a discount factor. Here we use ∆(·) to represent
the set of all probability distributions over some set. Given a policy π : S → ∆(A) and an initial
state s0 = s ∈ S , a random trajectory {(st, at, tt)∞t=0} can be sampled from M : at | st ∼ π(· | st),
rt | (st, at) ∼ PR(· | st, at), st+1 | (st, at) ∼ P (· | st, at) for any t ∈ N. Given a trajectory, we

define the return by Gπ(s) :=
∑∞

t=0 γ
trt ∈

[
0, 1

1−γ

]
. We denote return distribution ηπ(s) as the

probability distribution of Gπ(s), and ηπ := (ηπ(s))s∈S . The expected return V π(s) = EGπ(s) is
the value function in the traditional RL setting.

2.1 Distributional Bellman Equation and Operator

Recall that the classic policy evaluation aims at computing the value functions V π. It is known that
V π = (V π(s))s∈S satisfy the Bellman equation. That is, for any s ∈ S ,

V π(s) = [Tπ(V π)] (s) = Ea∼π(·|s),r∼PR(·|s,a),s′∼P (·|s,a) [r + γV π(s′)] . (1)

The operator Tπ : RS → R
S is called the Bellman operator, and V π is a fixed point of Tπ .
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The task of distribution policy evaluation is finding ηπ given some fixed policy π. ηπ satisfies a
distributional version of the Bellman equation (1). That is, for any s ∈ S ,

ηπ(s) = (T πηπ) (s) = Ea∼π(·|s),r∼PR(·|s,a),s′∼P (·|s,a)
[
(br,γ)# ηπ(s′)

]
, (2)

where br,γ : R → R is an affine function defined by br,γ(x) = r+ γx. And f#µ is the push forward

measure of µ through any function f : R → R, so that f#µ(A) = µ(f−1(A)) for any Borel set A,

where f−1(A) := {x : f(x) ∈ A}. The operator T π : ∆
([

0, 1
1−γ

])S
→ ∆

([
0, 1

1−γ

])S
is known

as the distributional Bellman operator, and ηπ is a fixed point of T π . For notational simplicity, we

denote ∆
([

0, 1
1−γ

])
as P from now on.

2.2 T π as Contraction in P

A key property of the Bellman operator Tπ is that it is a γ-contraction w.r.t. the supreme norm (i.e.
ℓ∞ norm). However, before we can properly discuss the contraction properties of T π , we need to
specify a metric d on P . And for any metric d on P , we denote d̄ as the corresponding supreme
metric on PS , i.e., d̄ (η, η′) := maxs∈S d (η(s), η′(s)) for any η, η′ ∈ PS .

Suppose µ and ν are two probability distributions on R with finite p-moments for
p ∈ [1,∞]. The p-Wasserstein metric between µ and ν is defined as Wp(µ, ν) :=(
infκ∈Γ(µ,ν)

∫
R2 |x− y|p κ(dx, dy)

)1/p
. Each element κ ∈ Γ(µ, ν) is a coupling of µ and ν, i.e.,

a joint distribution on R
2 with prescribed marginals µ and ν on each “axis.” When p = 1 we have

W1(µ, ν) =
∫
R
|Fµ(x) − Fν(x)|dx, where Fµ and Fν are the cumulative distribution function of

µ and ν, respectively. It can be shown that T π is a γ-contraction w.r.t. the supreme p-Wasserstein
metric W̄p.

Proposition 2.1. [Bellemare et al., 2023, Propositions 4.15] The distributional Bellman operator
is a γ-contraction on PS w.r.t. the supreme p-Wasserstein metric for p ∈ [1,∞]. That is, for any
η, η′ ∈ PS , we have W̄p (T πη, T πη′) ≤ γW̄p(η, η

′).

The ℓp metric between µ and ν is defined as ℓp(µ, ν) =
(∫

R
|Fµ(x)− Fν(x)|p dx

) 1
p for p ∈ [1,∞),

and T π is γ
1
p -contraction w.r.t. the supreme ℓp metric ℓ̄p.

Proposition 2.2. [Bellemare et al., 2023, Propositions 4.20] The distributional Bellman operator is

a γ
1
p -contraction on PS w.r.t. the supreme ℓp metric for p ∈ [1,∞). That is, for any η, η′ ∈ PS ,

we have ℓ̄p (T πη, T πη′) ≤ γ
1
p ℓ̄p(η, η

′).

Note that the ℓ1 metric coincides with the 1-Wasserstein metric. And the ℓ2 metric is also called the
Cramér metric, which plays an important role in subsequent analysis because the zero-mass signed
measure space equipped with this metric

(
M, ‖·‖ℓ2

)
(defined in Section 5.1) is a Hilbert space5.

Thereby, we can apply Freedman’s inequality in Hilbert spaces.

2.3 Freedman’s Inequality in Hilbert Spaces

Just as Freedman’s inequality is essential for the theory of TD (Theorem 1 in [Li et al., 2024]),
a Hilbert space version of Freedman’s inequality is indispensable for deriving the minimax non-
asymptotic convergence bound for distributional TD. At the moment, we state a Hilbert space ver-
sion of the original Freedman’s inequality (Theorem 1.6 in [Freedman, 1975]), and more detailed
results can be found in Appendix A.

Let X be a Hilbert space, {Xi}ni=1 be an X -valued martingale difference sequence adapted to the

filtration {Fi}ni=1, Yi :=
∑i

j=1 Xj be the corresponding martingale, and Wi :=
∑i

j=1 σ
2
j be the

corresponding quadratic variation process. Here σ2
j := Ej−1 ‖Xj‖2, and Ei [·] := E [·|Fi] denotes

the conditional expectation.

5In fact, the space
(

M, ‖·‖ℓ2

)

is not complete. However, the completeness property does not affect the

non-asymptotic analysis, see Section 5.1 for more details.
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Theorem 2.1 (Freedman’s inequality in Hilbert spaces). Suppose maxi∈[n] ‖Xi‖ ≤ b for some
constant b > 0. Then, for any ε and σ > 0, the following inequality holds

P
(
∃k ∈ [n], s.t. ‖Yk‖ ≥ ε and Wk ≤ σ2

)
≤ 2 exp

{
− ε2/2

σ2 + bε/3

}
.

3 Distributional Temporal Difference Learning

If the MDP M = 〈S,A,PR, P, γ〉 is known, and because V π is the fixed point of the contraction
Tπ, V π can be evaluated via the famous dynamic programming (DP) algorithm. To be concrete, for

any initialization V (0) ∈ R
S , if we define the iteration sequence V (k+1) = Tπ(V (k)) for k ∈ N,

we have limk→∞
∥∥V (k) − V π

∥∥
∞ = 0 by the contraction mapping theorem (Proposition 4.7 in

[Bellemare et al., 2023]).

Similarly, the distributional dynamic programming algorithm defines the iteration sequence as

η(k+1) = T πη(k) for any initialization η(0). In the same way, we have limk→∞ W̄p(η
(k), ηπ) = 0

for p ∈ [1,∞] and limk→∞ ℓ̄p(η
(k), ηπ) = 0 for p ∈ [1,∞).

In most application scenarios, the transition dynamic P and reward distribution PR are unknown,
and instead we can only get samples of P and PR in a streaming manner. In this paper, we as-
sume a generative model [Kakade, 2003, Kearns et al., 2002] is accessible, which generates in-
dependent samples for all states in each iteration, i.e., in the t-th iteration, we collect sample
at(s) ∼ π(·|s), st(s) ∼ P (·|s, at(s)), rt(s) ∼ PR(·|s, at(s)) for each s ∈ S . Similar to TD
[Sutton, 1988] in classic RL, distributional TD also employs the stochastic approximation (SA)
[Robbins and Monro, 1951] technique to address the aforementioned problem and can be viewed as
an approximate version of distributional DP.

Non-parametric Distributional TD We first introduce non-parametric distributional temporal dif-
ference learning (NTD), which is helpful in the theoretical understanding of distributional TD. In the
setting of NTD, we assume the return distributions can be precisely updated without any parametriza-
tion. For any initialization ηπ0 ∈ PS , the updating scheme is given by

ηπt = (1− αt)η
π
t−1 + αtT π

t ηπt−1

for any t ≥ 1. Here αt is the step size. The empirical Bellman operator at the t-th iteration T π
t is

defined as
(T π

t η) (s) = (brt(s),γ)#(η(st+1)),

which is an unbiased estimator of (T πη) (s). It is evident that NTD is a SA modification of distribu-
tional DP. Consequently, we can analyze NTD using the techniques from the SA area.

Categorical Distributional TD Now, we revisit the more practical CTD. In this case, the updates
in CTD is computationally tractable, due to the following categorical parametrization of probability
distributions:

PK :=

{
K∑

k=0

pkδxk
: p0, . . . , pK ≥ 0 ,

K∑

k=0

pk = 1

}
,

where K ∈ N, and 0 ≤ x0 < · · · < xK ≤ 1
1−γ are fixed points of the support. For simplicity,

we assume {xk}Kk=0 are equally-spaced, i.e., xk = k
K(1−γ) . We denote the gap between two points

by ιK = 1
K(1−γ) . When updating the return distributions, we need to evaluate the ℓ2-projection

of PK , ΠK : P → PK , ΠKµ := argminµ̂∈PK
ℓ2(µ, µ̂). It can be shown (Proposition 5.14 in

[Bellemare et al., 2023]) that the projection is uniquely given by

ΠKµ =

K∑

k=0

pk(µ)δxk
, where pk(µ) = EX∼µ

[(
1−

∣∣∣∣
X − xk

ιK

∣∣∣∣
)

+

]
,

(x)+ := max {x, 0} for any x ∈ R. It is known that ΠK is non-expansive w.r.t. the Cramér metric
(Lemma 5.23 in [Bellemare et al., 2023]), i.e., ℓ2(ΠKµ,ΠKν) ≤ ℓ2(µ, ν) for any µ, ν ∈ P . For
any η ∈ PS , s ∈ S , we slightly abuse the notation and define (ΠKη) (s) := ΠKη(s). ΠK is still
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non-expansive w.r.t. ℓ̄2. Hence T π,K := ΠKT π is a
√
γ-contraction w.r.t. ℓ̄2, we denote its unique

fixed point as ηπ,K ∈ PS
K . The approximation error induced by categorical parametrization is given

by (Proposition 3 in Rowland et al. [2018])

ℓ̄2(η
π, ηπ,K) ≤ 1√

K(1− γ)
, W̄1(η

π, ηπ,K) ≤ 1√
1− γ

ℓ̄2(η
π, ηπ,K) ≤ 1√

K(1− γ)3/2
. (3)

Now, we are ready to give the updating scheme of CTD, given any initialization ηπ0 ∈ PS
K ,

ηπt = (1− αt)η
π
t−1 + αtΠKT π

t ηπt−1

for any t ≥ 1. We can find that the only difference between CTD and NTD lies in the additional
application of the projection operator ΠK at each iteration in CTD.

4 Statistical Analysis

In this section, we state our main results. For both NTD and CTD, we give the non-asymptotic
convergence rates of W̄p(η

π
T , η

π) and ℓ̄2(η
π
T , η

π), respectively.

4.1 Non-asymptotic Analysis of NTD

We first provide a non-asymptotic convergence rate of W̄1(η
π
T , η

π) for NTD, which is minimax
optimal (Theorem B.1) up to logarithmic factors.

Theorem 4.1 (Sample complexity of NTD in the 1-Wasserstein metric). Given any δ ∈ (0, 1) and
ε ∈ (0, 1), let the initialization be ηπ0 ∈ PS , the total update number T satisfy

T ≥ C1 log
3 T

ε2(1− γ)3
log

|S|T
δ

for some large universal constant C1 > 1, i.e., T = Õ
(

1
ε2(1−γ)3

)
, and the step size αt satisfy

1

1 +
c2(1−

√
γ)t

log t

≤ αt ≤
1

1 +
c3(1−

√
γ)t

log t

for some small universal constants c2 > c3 > 0. Then, with probability at least 1−δ, the last iterate
estimator satisfies W̄1 (η

π
T , η

π) ≤ ε.

Because W̄1 (η
π
T , η

π) ≤ 1
1−γ always holds, we can translate the high probability bound to a mean

error bound, that is,

E
[
W̄1 (η

π
T , η

π)
]
≤ ε(1− δ) +

δ

1− γ
≤ 2ε

if we take δ ≤ ε(1 − γ). In the subsequent discussion, we will not state the mean error bound
conclusions for the sake of brevity.

The key idea of our proof is to first expand the error term W̄1 (η
π
T , η

π) over the time steps. Then it
can be decomposed into an initial error term and a martingale term. The initial error term becomes
smaller as the iteration goes due to the contraction properties of T π. To control the martingale
term, we first use the basic inequality (Lemma E.1) W1 (µ, ν) ≤ 1√

1−γ
ℓ2 (µ, ν), which allows us to

analyze this error term in the Hilbert space (M, ‖·‖ℓ2) defined in Section 5.1. Consequently, we can
bound it using Freedman’s inequality in the Hilbert space (Theorem A.2). A more detailed outline
of proof can be found in Section 5.2.

Combining Theorem 4.1 with the basic inequality W̄p(η, η
′) ≤ 1

(1−γ)
1− 1

p
W̄

1
p

1 (η, η′) for any η, η′ ∈

PS (Lemma E.1), we can derive that T = Õ
(

1
ε2p(1−γ)2p+1

)
iterations are sufficient to ensure

W̄p(η
π
T , η

π) ≤ ε. As pointed out in the example after Corollary 3.1 in [Zhang et al., 2023], when
p > 1, the slow rate in terms of ε is inevitable without additional regularity conditions.

Although the 1-Wasserstein metric cannot bound the Cramér metric properly, by making slight mod-
ifications to the proof we have the following non-asymptotic convergence rate of ℓ̄2(η

π
T , η

π). See
Appendix C.5 for our proof.
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Corollary 4.1 (Sample complexity of NTD in the Cramér metric). Given any δ ∈ (0, 1) and ε ∈
(0, 1), let the initial value ηπ0 ∈ PS , the total update number T satisfy

T ≥ C1 log
3 T

ε2(1− γ)5/2
log

|S|T
δ

for some large universal constant C1 > 1, i.e., T = Õ
(

1
ε2(1−γ)5/2

)
, and the step size αt satisfy

1

1 +
c2(1−

√
γ)t

log t

≤ αt ≤
1

1 +
c3(1−

√
γ)t

log t

for some small universal constants c2 > c3 > 0. Then, with probability at least 1−δ, the last iterate
estimator satisfies ℓ̄2 (η

π
T , η

π) ≤ ε.

4.2 Non-asymptotic Analysis of CTD

We first state a parallel result to Theorem 4.1.

Theorem 4.2 (Sample complexity of CTD in the 1-Wasserstein metric). Given any δ ∈ (0, 1) and
ε ∈ (0, 1), suppose K > 4

1−γ , the initial value ηπ0 ∈ PS
K , the total update number T satisfies

T ≥ C1 log
3 T

ε2(1− γ)3
log

|S|T
δ

for some large universal constant C1 > 1, i.e., T = Õ
(

1
ε2(1−γ)3

)
, and the step size αt satisfies

1

1 +
c2(1−

√
γ)t

log t

≤ αt ≤
1

1 +
c3(1−

√
γ)t

log t

for some small universal constants c2 > c3 > 0. Then, with probability at least 1 − δ, the last
iterate estimator satisfies W̄1

(
ηπT , η

π,K
)
≤ ε

2 . Furthermore, according to the upper bound (3) of

the approximation error W̄1

(
ηπ,K , ηπ

)
, if we take K > 4

ε2(1−γ)3 , we have W̄1 (η
π
T , η

π) ≤ ε.

Note that the order (modulo logarithmic factors) of sample complexity of CTD is better than the
previous results of SCPE [Böck and Heitzinger, 2022], and we do not need the additional term
introduced in the updating scheme of SCPE.

The proof of this theorem is almost the same as that of Theorem 4.1, we outline the proof in Sec-

tion 5.2. The W̄1 metric result can be translated into sample complexity bound Õ
(

1
ε2p(1−γ)2p+1

)
in

the W̄p metric. We comment that this theoretical result matches the sample complexity bound in the
model-based setting [Rowland et al., 2024b].

As in the NTD setting, we have the following non-asymptotic convergence rate of ℓ̄2(η
π
T , η

π) as a
corollary of Theorem 4.2. See Appendix C.5 for the proof.

Corollary 4.2 (Sample complexity of CTD in the Cramér metric). For any given δ ∈ (0, 1) and
ε ∈ (0, 1), suppose K > 4

1−γ , the initialization is ηπ0 ∈ PS
K , the total update number T satisfies

T ≥ C1 log
3 T

ε2(1− γ)5/2
log

|S|T
δ

for some large universal constant C1 > 1, i.e., T = Õ
(

1
ε2(1−γ)5/2

)
, and the step size αt satisfies

1

1 +
c2(1−

√
γ)t

log t

≤ αt ≤
1

1 +
c3(1−

√
γ)t

log t

for some small universal constants c2 > c3 > 0. Then, with probability at least 1 − δ, the last
iterate estimator satisfies ℓ̄2

(
ηπT , η

π,K
)
≤ ε

2 . Furthermore, according to the upper bound (3) of the

approximation error ℓ̄2
(
ηπ,K , ηπ

)
, if we take K > 4

ε2(1−γ)2 , we have ℓ̄2 (η
π
T , η

π) ≤ ε.
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5 Proof Outlines

In this section, we will outline the proofs of our main theoretical results (Theorem 4.1, Corollary 4.1,
Theorem 4.2, and Corollary 4.2). Before diving into the details of the proofs, we first define some
notation.

5.1 Zero-mass Signed Measure Space

To analyze the distance between the estimator and the ground-truth ηπ, we will work with the zero-
mass signed measure space M defined as follows

M :=

{
µ : µ is a signed measure with |µ| (R) < ∞, µ(R) = 0, supp(µ) ⊆ [0,

1

1− γ
]

}
,

where |µ| is the total variation measure of µ, and supp(µ) is the support of µ. See [Bogachev, 2007]
for more details about signed measures.

For any µ ∈ M, we define its cumulative function as Fµ(x) := µ[0, x). We can check that Fµ is
linear w.r.t. µ, that is, Fαµ+βν = αFµ + βFν for any α, β ∈ R, µ, ν ∈ M.

To analyze the Cramér metric case, we define the following Cramér inner product on M:

〈µ, ν〉ℓ2 :=

∫ 1
1−γ

0

Fµ(x)Fν(x)dx.

It is easy to verify that 〈·, ·〉ℓ2 is indeed an inner product on M. The corresponding norm, called the

Cramér norm, is given by ‖µ‖ℓ2 =
√

〈µ, µ〉ℓ2 =

√∫ 1
1−γ

0 (Fµ(x))
2
dx. We have ν1 − ν2 ∈ M and

‖ν1 − ν2‖ℓ2 = ℓ2 (ν1, ν2) for any ν1, ν2 ∈ P .

The W1 norm on M is defined as ‖µ‖W1
:=
∫ 1

1−γ

0 |Fµ(x)| dx. We have ‖ν1 − ν2‖W1
= W1 (ν1, ν2)

for any ν1, ν2 ∈ P .

We can extend the distributional Bellman operator T π and the Cramér projection operator ΠK nat-
urally to MS . Here, the product space MS is also a Banach space, and we use the supreme norm:
‖η‖ℓ̄2 := maxs∈S ‖η(s)‖ℓ2 , and ‖η‖W̄1

:= maxs∈S ‖η(s)‖W1
for any η ∈ MS . We denote by I

the identity operator in MS .

When the norm ‖·‖ is applied to A ∈ L(X ), where X is any Banach space, and L(X )
is the space of all bounded linear operators in X , we refer ‖A‖ to the operator norm
of A, which is defined as ‖A‖ := supη∈X ,‖η‖=1 ‖Aη‖. With this notation, L(X ) =

{A : A is a linear operator mapping from X to X , and ‖A‖ < ∞}.

Proposition 5.1. T π and ΠK are linear operators in MS . Furthermore, ‖T π‖ℓ̄2 ≤ √
γ,

‖T π‖W̄1
≤ γ, ‖ΠK‖ℓ̄2 = 1, and ‖ΠK‖W̄1

≤ 1.

The proof of the last inequality can be found in the proof of Lemma C.4, while the remaining results
are trivial. We omit the proofs for brevity.

Moreover, we have the following matrix (of operators) representations of T π and ΠK : T π ∈
L(M)S×S for any η ∈ MS ,

(T πη) (s) =
∑

a∈A,s′∈S
π(a | s)P (s′ | s, a)

∫ 1

0

(br,γ)# η(s′)PR(dr | s, a) =
∑

s′∈S
T π(s, s′)η(s′),

where T π(s, s′) ∈ L(M) for any ν ∈ M,

T π(s, s′)ν =
∑

a∈A
π(a | s)P (s′ | s, a)

∫ 1

0

(br,γ)# νPR(dr | s, a).

It can be verified that ‖T (s, s′)‖ℓ2 ≤ √
γ
∑

a∈A π(a | s)P (s′ | s, a) =:
√
γPπ(s′|s). Similarly,

‖T (s, s′)‖W1
≤ γPπ(s′|s), and ΠK = diag

(
ΠK

∣∣
M
)
s∈S ∈ L(M)S×S . With these represen-

tations, ΠKT π ∈ L(M)S×S can be interpreted as matrix multiplication, where the scalar mul-
tiplication is replaced by the composition of operators. It can be verified that (ΠKT π) (s, s′) =
ΠKT π(s, s′), and ‖(ΠKT π) (s, s′)‖ℓ2 ≤ √

γPπ(s′|s).
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Remark 1: Although the spaces
(
M, ‖·‖ℓ2

)
and

(
M, ‖·‖W1

)
are not complete, we will use their

completions to replace them without loss of generality, because the completeness property does
not affect the non-asymptotic analysis. For simplicity, we still use M to denote the completion
space. And according to the BLT theorem (Theorem 5.19 in [Hunter and Nachtergaele, 2001]), any
bounded linear operator can be extended to the completion space, and still preserves its operator
norm.

5.2 Analysis of Theorems 4.1 and 4.2

For simplicity, we abbreviate both ‖·‖ℓ̄2 and ‖·‖ℓ2 as ‖·‖ in this part. For all t ∈ [T ] :=

{1, 2, · · · , T}, we denote Tt := T π
t , T := T π, η := ηπ for NTD; Tt := ΠKT π

t , T := ΠKT π ,
η := ηπ,K for CTD; and ηt := ηπt , ∆t := ηt − η ∈ MS for both NTD and CTD. According to
Lemma E.2, ηt ∈ PS for NTD and ηt ∈ PS

K for CTD. Our goal is to bound the W̄1 norm of the

error term ‖∆T ‖W̄1
. This can be achieved by bounding ‖∆T ‖, as ‖∆T ‖W̄1

≤ 1√
1−γ

‖∆T ‖.

According to the updating rule, we have the error decomposition

∆t = ηt − η

= (1− αt)ηt−1 + αtTtηt−1 − η

= (1− αt)∆t−1 + αt (Ttηt−1 − T η)

= (1− αt)∆t−1 + αt (Tt − T ) ηt−1 + αtT (ηt−1 − η)

= [(1− αt)I + αtT ] ∆t−1 + αt (Tt − T ) ηt−1.

Applying it recursively, we can further decompose the error into two terms

∆T =

T∏

t=1

[(1− αt)I + αtT ] ∆0

︸ ︷︷ ︸
(I)

+

T∑

t=1

αt

T∏

i=t+1

[(1− αi)I + αiT ] (Tt − T ) ηt−1

︸ ︷︷ ︸
(II)

.

Term (I) is an initial error term that becomes negligible when T is large because T is a contraction.
Term (II) can be bounded via Freedman’s inequality in the Hilbert space (Theorem A.2). Combining
the two upper bound, we can establish a recurrence relation. Solving this relation will lead to the
conclusion.

We first establish the conclusion for step sizes that depend on T . Specifically, we consider

T ≥ C4 log
3 T

ε2(1− γ)3
log

|S|T
δ

,

1

1 +
c5(1−

√
γ)T

log2 T

≤ αt ≤
1

1 +
c6(1−

√
γ)t

log2 T

,

where c5 > c6 > 0 are small constants satisfying c5c6 ≤ 1
8 , and C4 > 1 is a large constant

depending only on c5 and c6. As shown in Appendix C.1, once we have established the conclusion
in this setting, we can recover the original conclusion stated in the theorem.

Now, we introduce the following useful quantities involving step sizes and γ

β
(t)
k :=





∏t
i=1

(
1− αi(1−

√
γ)
)
, if k = 0,

αk

∏t
i=k+1

(
1− αi(1−

√
γ)
)
, if 0 < k < t,

αT , if k = t.

The following lemma provides useful bounds for β
(t)
k .

Lemma 5.1. Suppose c5c6 ≤ 1
8 . Then, for all t ≥ T

c6 log T , we have that

β
(t)
k ≤ 1

T 2
, for 0 ≤ k ≤ t

2
; β

(t)
k ≤ 2 log3 T

(1−√
γ)T

, for
t

2
< k ≤ t.
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The proof can be found in Appendix C.2. From now on, we only consider t ≥ T
c6 log T .

The upper bound of term (I) is given by

(I) ≤
t∏

k=1

‖(1−αk)I+αkT ‖ ‖∆0‖ ≤
t∏

k=1

((1−αk)+αk
√
γ)

1√
1−γ

=
β
(t)
0√
1−γ

≤ 1√
1−γT 2

,

where ‖∆0‖ ≤
√∫ 1

1−γ

0 dx = 1√
1−γ

.

As for term (II), we have the following upper bound with high probability by utilizing Freedman’s
inequality (Theorem A.2).

Lemma 5.2. For any δ ∈ (0, 1), with probability at least 1 − δ, we have for all t ≥ T
c6 log T , in the

NTD case, ∥∥∥∥∥

t∑

k=1

αk

t∏

i=k+1

[(1− αi)I + αiT ] (Tk − T ) ηk−1

∥∥∥∥∥

≤ 34

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)2T

(
1 + max

k: t/2<k≤t
‖∆k−1‖W̄1

)
.

The conclusion still holds for the CTD case if we take K ≥ 4
ε2(1−γ)2 + 1.

The proof can be found in Appendix C.3. Combining the two results, we find the following recur-
rence relation in terms of the W̄1 norm holds given the choice of T , with probability at least 1 − δ,
for all t ≥ T

c6 log T

‖∆t‖W̄1
≤ 1√

1− γ
‖∆t‖ ≤ 35

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T

(
1 + max

k: t/2<k≤t
‖∆k−1‖W̄1

)
.

In Theorem C.1, we solve the relation and obtain the error bound of the last iterate estimator:

‖∆T ‖W̄1
≤ C7




√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
+

(
log3 T

) (
log |S|T

δ

)

(1− γ)3T


 ,

where C7 > 1 is a large universal constant depending on c6. Now, we can obtain the conclusion if

taking C4 ≥ 2C2
7 and T ≥ C4 log3 T

ε2(1−γ)3 log
|S|T
δ .

6 Conclusions

In this paper we have studied the statistical performance of the distributional temporal difference
learning (TD) from a non-asymptotic perspective. Specifically, we have considered two instances
of distributional TD, namely, the non-parametric distributional TD (NTD) and the categorical distri-

butional TD (CTD). For both NTD and CTD, we have shown that Õ
(

1
ε2p(1−γ)2p+1

)
iterations are

sufficient to achieve a p-Wasserstein ε-optimal estimator, which is minimax optimal (up to logarith-
mic factors). We have established a novel Freedman’s inequality in Hilbert spaces to prove these
theoretical results, which has independent theoretical value beyond the current work. We leave the
details to Appendix A.
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A The Key Lemma: Freedman’s Inequality in Hilbert Spaces

Freedman’s inequality, proposed in [Freedman, 1975], can be viewed as a Bernstein’s inequality
for martingales, which is crucial for analyzing stochastic approximation algorithms. Compared
to the Azuma-Hoeffding inequality which only utilizes the boundedness of martingale difference
sequences, Freedman’s inequality incorporates second-order information, namely the quadratic vari-
ation (cumulative conditional variance) of martingales. This may leads to a sharper concentration
result. It has various generalizations, such as matrix Freedman’s inequality [Tropp, 2011]. However,
to the best of our knowledge, a Freedman’s inequality in Hilbert spaces has not been established yet.
Just as Freedman’s inequality is essential for the theory of TD (Theorem 1 in [Li et al., 2024]), it is
indispensable for deriving the minimax non-asymptotic convergence bound for distributional TD.

In this section, we will present a Freedman’s inequalities in Hilbert spaces. Firstly, we will state
a Hilbert space version of the original Freedman’s inequality (Theorem 1.6 in [Freedman, 1975]).
After that, we state a generalization of a more powerful version (Theorem 6 in [Li et al., 2024])
to Hilbert spaces. We will provide self-contained proofs in Appendix A.1, primarily inspired by
Theorem 3.2 in [Pinelis, 1994]. The necessary knowledge of martingale theory for the proofs can be
found in any standard textbook, such as [Durrett, 2019].

Let X be a Hilbert space, {Xi}ni=1 be an X -valued martingale difference sequence adapted to the

filtration {Fi}ni=1, Yi :=
∑i

j=1 Xj be the corresponding martingale, Wi :=
∑i

j=1 σ
2
j be the cor-

responding quadratic variation process. Here σ2
j := Ej−1 ‖Xj‖2, and Ei [·] := E [·|Fi] is the

conditional expectation.

Theorem A.1 (Freedman’s inequality in Hilbert spaces). Suppose maxi∈[n] ‖Xi‖ ≤ b for some
constant b > 0. Then, for any ε, σ > 0, the following inequality holds

P
(
∃k ∈ [n], s.t. ‖Yk‖ ≥ ε and Wk ≤ σ2

)
≤ 2 exp

{
− ε2/2

σ2 + bε/3

}
. (4)

Now, we are ready to state the generalization of Theorem 6 in [Li et al., 2024] to Hilbert spaces,
which is used in our non-asymptotic analysis.

Theorem A.2 (Freedman’s inequality in Hilbert spaces with bounded quadratic variation). Suppose
maxi∈[n] ‖Xi‖ ≤ b and Wn ≤ σ2 for some constant b, σ > 0. Then, for any δ ∈ (0, 1), and any
positive integer H ≥ 1, the following inequality holds with probability at least 1− δ

‖Yn‖ ≤
√
8max

{
Wn,

σ2

2H

}
log

2H

δ
+

4

3
b log

2H

δ
. (5)

The proof can be found in Appendix A.2.

Remark 2: Theorem 2.1 can be straightforwardly extended to the case where (‖Xi‖)ni=1 satisfies
the Bernstein condition (Theorem 1.2A in [de la Pena, 1999]), thereby relaxing the boundedness

assumption on ‖Xi‖. Namely, Ei−1 ‖Xi‖k ≤ 1
2k!σ

2
i b

k−2 for some b > 0, and for all i ∈ [n],
k ∈ {2, 3, · · ·}. In this case, Freedman’s inequality still holds, albeit with a worse constant.

P
(
∃k ∈ [n], s.t. ‖Yk‖ ≥ ε and Wk ≤ σ2

)
≤ 2 exp

{
− ε2/2

σ2 + bε

}
. (6)

The proof only requires making appropriate modifications after the fifth line of Equation (12). Note
that Bernstein condition holds if maxi∈[n] ‖Xi‖ ≤ b.

A.1 Proof of Theorem 2.1

Proof. For any λ > 0, t ∈ [0, 1] and j ∈ [n], let φ(t) = φj,λ(t) := Ej−1 cosh (λ ‖Yj−1 + tXj‖) =
Ej−1 cosh (λu(t)), where u(t) := ‖Yj−1 + tXj‖. We aim to use the Newton-Leibniz formula to es-
tablish the relationship between φ(1) = Ej−1 cosh (λ ‖Yj‖) and φ(0) = cosh (λ ‖Yj−1‖). This will
allow us to construct a positive supermartingale (Bi)

n
i=0. By utilizing the positive supermartingale

and optional stopping theorem, we can derive the desired concentration inequality.

Firstly, we calculate the derivative of φ.

u′(t) =
〈Yj−1 + tXj , Xj〉

u(t)
, (7)
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φ′(t) = λEj−1 [sinh (λu(t))u
′(t)]

= λEj−1

[
sinh (λu(t))

〈Yj−1 + tXj , Xj〉
u(t)

]
,

(8)

φ′(0) = λEj−1

[
sinh (λu(0))

〈Yj−1, Xj〉
u(0)

]

= λ sinh (λ ‖Yj−1‖)
〈Yj−1,Ej−1 [Xj ]〉

‖Yj−1‖
= 0.

(9)

By utilizing Newton-Leibniz formula, we have

φ(1) = φ(0) +

∫ 1

0

φ′(s)ds

= φ(0) +

∫ 1

0

∫ s

0

φ′′(t)dtds

= φ(0) +

∫ 1

0

(1− t)φ′′(t)dt.

(10)

Now, we calculate the second order derivate of φ.

φ′′(t) = λEj−1

{
d

dt
[sinh (λu(t))u′(t)]

}

= λEj−1

[
λ (u′(t))

2
cosh (λu(t)) + u′′(t) sinh (λu(t))

]

≤ λ2
Ej−1

[(
(u′(t))

2
+ u′′(t)u(t)

)
cosh (λu(t))

]

=
λ2

2
Ej−1

[(
u2
)′′

(t) cosh (λu(t))
]

= λ2
Ej−1

[
‖Xj‖2 cosh (λ ‖Yj−1 + tXj‖)

]

≤ λ2 cosh (λ ‖Yj−1‖)Ej−1

[
‖Xj‖2 exp (λt ‖Xj‖)

]
,

(11)

where in the third line, we used u′′(t) =
‖Xj‖2u(t)−〈Yj−1+tXj,Xj〉

u(t)

2

u2(t) ≥ 0 by Cauchy-Schwarz

inequality, and h(x) = x cosh(x) − sinh(x) ≥ 0 for any x ≥ 0, the inequality holds be-
cause h(0) = 0 and h′(x) = x sinh(x) ≥ 0 for any x ≥ 0. In the fourth line, we used(
u2
)′′

(t) = 2
(
(u′(t))2 + u′′(t)u(t)

)
. In the fifth line, we used

(
u2
)′′

(t) =
d2

dt2
‖Yj−1 + tXj‖2 =

d

dt
(2 〈Yj−1 + tXj , Xj〉) = 2 ‖Xj‖2 .

And in the last line, we used

cosh (λ ‖Yj−1 + tXj‖) ≤ cosh (λ ‖Yj−1‖) exp (λt ‖Xj‖) ,

this holds since

exp (λ ‖Yj−1 + tXj‖) ≤ exp {λ (‖Yj−1‖+ t ‖Xj‖)} = exp (λ ‖Yj−1‖) exp (λt ‖Xj‖) ,
exp (−λ ‖Yj−1 + tXj‖) ≤ exp {−λ (‖Yj−1‖ − t ‖−Xj‖)} = exp (−λ ‖Yj−1‖) exp (λt ‖Xj‖) .
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Hence, we can derive the following inequality for all j ∈ [n]

Ej−1 [cosh (λ ‖Yj‖)] = φ(1) = φ(0) +

∫ 1

0

(1− t)φ′′(t)dt

≤ cosh (λ ‖Yj−1‖) + λ2 cosh (λ ‖Yj−1‖)Ej−1

[
‖Xj‖2

∫ 1

0

(1− t) exp (λt ‖Xj‖) dt
]

=cosh (λ ‖Yj−1‖) + λ2 cosh (λ ‖Yj−1‖)Ej−1

[
‖Xj‖2

exp (λ ‖Xj‖)− λ ‖Xj‖ − 1

λ2 ‖Xj‖2

]

=Ej−1 [exp (λ ‖Xj‖)− λ ‖Xj‖] cosh (λ ‖Yj−1‖)

=Ej−1

[
1 +

∞∑

k=0

1

(k + 2)!
(λ ‖Xj‖)k+2

]
cosh (λ ‖Yj−1‖)

≤Ej−1

[
1 +

λ2 ‖Xj‖2
2

∞∑

k=0

(
λb

3

)k
]
cosh (λ ‖Yj−1‖)

=

(
1 +

λ2σ2
j

2(1− λb/3)

)
cosh (λ ‖Yj−1‖)

≤ exp

{
λ2σ2

j

2(1− λb/3)

}
cosh (λ ‖Yj−1‖) ,

(12)

which holds for any λ ∈ (0, 3
b ). In the fifth line, we used Taylor expansion ex =

∑∞
k=0

xk

k! . In the

sixth line, we used (k + 2)! ≥ 2(3k) and ‖Xj‖ ≤ b. In the seventh line, we used Taylor expansion
1

1−x =
∑∞

k=0 x
k for x ∈ (−1, 1).

Let B0 := 1, Bi := exp
{
− λ2Wi

2(1−λb/3)

}
cosh (λ ‖Yi‖), then

Ei−1 [Bi] = exp

{
− λ2Wi−1

2(1− λb/3)

}
exp

{
− λ2σ2

i

2(1− λb/3)

}
Ei−1 [cosh (λ ‖Yi‖)]

≤ exp

{
− λ2Wi−1

2(1− λb/3)

}
cosh (λ ‖Yi−1‖)

= Bi−1,

(13)

i.e., (Bi)
n
i=0 is positive supermartingale. By optional stopping theorem (Theorem 4.8.4 in [Durrett,

2019]), for any stopping time τ , we have E [Bτ ] ≤ E [B0] = 1.

Let τ := inf {k ∈ [n] : ‖Yk‖ ≥ ε} be a stopping time, and inf ∅ := ∞. Define an event

A :=
{
∃k ∈ [n], s.t. ‖Yk‖ ≥ ε and Wk ≤ σ2

}
, (14)
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then on A, we have τ < ∞, ‖Yτ‖ ≥ ε and Wτ ≤ σ2, noting that Wk is non-decreasing with k. Our
goal is to provide an upper bound for P(A).

P(A) = E

[√
Bτ

1√
Bτ

1(A)

]

≤
√

E [Bτ ]E

[
1

Bτ
1(A)

]

≤

√√√√√E



exp

{
λ2Wτ

2(1−λb/3)

}

cosh (λ ‖Yτ‖)
1(A)




≤

√√√√√E



exp

{
λ2σ2

2(1−λb/3)

}

cosh (λε)
1(A)




≤
√

2 exp

{
−λε+

λ2σ2

2(1− λb/3)

}
P(A),

(15)

where in the second line, we used Cauchy-Schwarz inequality. In the third line, we used E [Bτ ] ≤ 1.
In the fourth line, we used ‖Yτ‖ ≥ ε and Wτ ≤ σ2 on A, and cosh(x) is increasing when x ≥ 0. In
the last line, we used cosh(x) ≥ 1

2e
x.

Hence for any λ ∈ (0, 3
b )

P(A) ≤ 2 exp

{
−λε+

λ2σ2

2 (1− λb/3)

}
, (16)

we can choose λ⋆ = ε
σ2+εb/3 ∈ (0, 3

b ), then

P(A) ≤ 2 exp

{
−λ⋆ε+

(λ⋆)
2
σ2

2 (1− λ⋆b/3)

}

= 2 exp



− ε2

σ2 + εb/3
+

σ2

2
(
1− εb/3

σ2+εb/3

) ε2

(σ2 + εb/3)
2





= 2 exp

{
− ε2/2

σ2 + εb/3

}
,

(17)

which is the desired conclusion.

A.2 Proof of Theorem A.2

Proof. According to Theorem 2.1, for any ε, σ̃ > 0, we have

P
(
‖Yn‖ ≥ ε and Wn ≤ σ̃2

)
≤ 2 exp

{
− ε2/2

σ̃2 + bε/3

}
. (18)

We can check that, when ε =
√
4σ̃2 log 2

δ +
4
3b log

2
δ , we have the upper bound on RHS is less than

δ, hence

P

(
‖Yn‖ ≥

√
4σ̃2 log

2

δ
+

4

3
b log

2

δ
and Wn ≤ σ̃2

)
≤ δ. (19)
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Define the events

HH :=

{
‖Yn‖ ≥

√
8max

{
Wn,

σ2

2H

}
log

2H

δ
+

4

3
b log

2H

δ

}
,

B0,H :=

{
‖Yn‖ ≥

√
8
σ2

2H
log

2H

δ
+

4

3
b log

2H

δ
and Wn ≤ σ2

2H−1

}

Bk,H :=

{
‖Yn‖ ≥

√
8
σ2

2k
log

2H

δ
+

4

3
b log

2H

δ
and

σ2

2k
≤ Wn ≤ σ2

2k−1

}
, 1 ≤ k ≤ H − 1.

(20)

Since Wn ≤ σ2, we can verify that HH ⊆ ⋃0≤k<H Bk,H . By the inequality (19) with σ̃2 = σ2

2k−1

and δ set to be δ
H , we have P (Bk,H) ≤ δ

H for all k = 0, 1, · · · , H − 1. By the union bound, we
arrive at the conclusion

P (HH) ≤
H−1∑

k=0

P (Bk,H) ≤ δ. (21)

B Minimax Lower Bound of Distributional Policy Evaluation

In this section, we still consider infinite-horizon tabular MDP defined in Section 2, and assume a
generative model is accessible. For any positive integer D, we define M (D) as the set of all MDPs
with state space size |S| = D. For any MDP M and policy π, we denote V π

M as the corresponding
value function, and ηπM as the corresponding return distribution.

Now, we can state the minimax lower bound of the distributional policy evaluation task in the 1-
Wasserstein metric.

Theorem B.1 (Minimax lower bound of distributional policy evaluation in the 1-Wasserstein metric).
For any positive integer D ≥ 3, and sample size T ≥ C

1−γ log D
2 , the following result holds

inf
η̂

sup
M∈M(D)

sup
π

E
[
W̄1 (η̂, η

π
M )
]
≥ c

(1− γ)3/2

√
log D

2

T
.

Here, c, C > 0 are universal constants, and the infimum η̂ ∈ PD ranges over all measurable
functions of T samples from the generative model.

The theorem states that for any algorithm, there exist corresponding MDP M and policy π, such that

to ensure E
[
W̄1 (η̂, η

π
M )
]
≤ ε for some ε > 0, at least Ω̃

(
1

ε2(1−γ)3

)
samples are required.

Proof of Theorem B.1. For any η ∈ PD, we define V(η) ∈ R
D as the entry-wise expectation of η.

It is easy to check that V(ηπM ) = V π
M . And recall the dual representation of 1-Wasserstein metric

(Corollary 5.16 in [Villani et al., 2009])

W1(µ, ν) = sup
f : f is 1-Lipschitz

|EX∼µ [f(X)]− EY∼ν [f(Y )]| , ∀µ, ν ∈ P, (22)

we have W̄1 (η̂, η
π
M ) ≥ ‖V(η̂)− V π

M‖∞. Hence

inf
η̂

sup
M∈M(D)

sup
π

E
[
W̄1 (η̂, η

π
M )
]
≥ inf

η̂
sup

M∈M(D)

sup
π

E [‖V(η̂)− V π
M‖∞]

≥ inf
V̂

sup
M∈M(D)

sup
π

E

[∥∥∥V̂ − V π
M

∥∥∥
∞

]

≥ c

(1− γ)3/2

√
log D

2

T
,

(23)

where the second inequality holds because V (η̂) ∈ R
D is also a measurable function of T sam-

ples from the generative model, and the infimum V̂ ∈ R
D ranges over all measurable functions

of T samples from the generative model. And the last inequality is due to Theorem 2(b) in
[Pananjady and Wainwright, 2020].
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C Omitted Proofs in Section 5

C.1 Remove the Dependence on T for Step Sizes

We have shown that the conclusion holds for

T ≥ C4 log
3 T

ε2(1− γ)3
log

|S|T
δ

, (24)

1

1 +
c5(1−

√
γ)T

log2 T

≤ αt ≤
1

1 +
c6(1−

√
γ)t

log2 T

, (25)

where c5c6 ≤ 1
8 , c5 > c6 > 0 and C4 > 0.

Then for some c2 > c3 > 0 to be determined, now we assume

1

1 +
c2(1−

√
γ)t

log2 t

≤ αt ≤
1

1 +
c3(1−

√
γ)t

log2 t

. (26)

Next, we will show that if we consider the result of the T
2 -th iteration with this step size scheme

as the initialization of a new iteration process, then the step sizes in the subsequent T
2 iterations lie

in the previously established range. If this is done, the conclusion still holds if we choose T ≥
2C4 log3 T
ε2(1−γ)3 log |S|T

δ , since the initialization ηπT/2 ∈ PS (or PS
K in the case of CTD) is independent

of the samples obtained for T
2 < t ≤ T .

For any T
2 < t ≤ T , we denote τ := t − T

2 , we can see that there exist c2 > c3 > 0, such that the
last inequality in both of the following lines hold simultaneously, which is desired.

α̃τ := αt ≤
1

1 +
c3(1−

√
γ)(τ+T/2)

log2(τ+T/2)

≤ 1

1 +
c3(1−

√
γ)τ

log2 T

≤ 1

1 +
c6(1−

√
γ)τ

log2(T/2)

, (27)

and

α̃τ = αt ≥
1

1 +
c2(1−

√
γ)(τ+T/2)

log2(τ+T/2)

≥ 1

1 +
2c2(1−

√
γ)T/2

log2(T/2)

≥ 1

1 +
c5(1−

√
γ)T/2

log2(T/2)

. (28)

C.2 Range of Step Size

Proof of Lemma 5.1.

(1−√
γ)αt ≥

1−√
γ

1 +
c5(1−

√
γ)T

log2 T

≥ 1−√
γ

2c5(1−
√
γ)T

log2 T

=
log2 T

2c5T
. (29)

For any 0 ≤ k ≤ t
2 ,

β
(t)
k ≤

[
1− αt/2(1−

√
γ)
]t/2

≤
(
1− log2 T

2c5T

)t/2

≤
(
1− log2 T

2c5T

) T
2c6 log T

=





(
1− log2 T

2c5T

) 2c5T

log2 T





log T
4c5c6

≤ 1

T 2
,

(30)

where in the last inequality, we used c5c6 ≤ 1
8 .
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And for any t
2 < k ≤ t,

β
(t)
k ≤ αk ≤ 1

c6(1−
√
γ)k

log2 T

≤ 2 log3 T

(1−√
γ)T

. (31)

C.3 Concentration of the Martingale Term

Proof of Lemma 5.2. We will show that the inequality holds for each t ≥ T
c6 log T and then apply the

union bound. For any s ∈ S , we denote

ζk(s) := ζ
(t)
k (s) = αk

{
t∏

i=k+1

[(1− αi)I + αiT ] (Tk − T ) ηk−1

}
(s), (32)

where we omit the superscript (t) for brevity, then LHS in the lemma equals

∥∥∥
∑t

k=1 ζk

∥∥∥ for each

t. Let Fk denote the σ-field that contains all information up to time step k, then {ζk(s)}tk=1 is a

{Fk}tk=1-martingale difference sequence:

Ek−1 [ζk(s)] = αk

{
t∏

i=k+1

[(1− αi)I + αiT ]Ek−1 [(Tk − T ) ηk−1]

}
(s) = 0. (33)

the first equality holds because a Bochner integral can be exchanged with a bounded linear operator
(see Pisier [2016] for more details about Bochner integral), and the second equality holds due to the
definition of the empirical distributional Bellman operator.

We hope to use Freedman’s inequality (Theorem A.2) to bound this martingale. To this end, we need
to give a deterministic upper bound of the martingale difference sequence, and an upper bound of
its quadratic variation.

Deterministic upper bound of maxk∈[t] ‖ζk(s)‖. The norm of the martingale difference ‖ζk(s)‖
can be bounded as follow

‖ζk(s)‖ ≤ ‖ζk‖

≤ αk

∥∥∥∥∥

t∏

i=k+1

[(1− αi)I + αiT ]

∥∥∥∥∥ ‖(Tk − T ) ηk−1‖

≤ αk

t∏

i=k+1

((1− αi) + αi
√
γ)

1√
1− γ

=
β
(t)
k√
1− γ

.

(34)

Hence, maxk∈[t] ‖ζk(s)‖ ≤ maxk∈[t] β
(t)
k√

1−γ
≤ 1√

1−γ
max

{
1
T 2 ,

2 log3 T
(1−√

γ)T

}
≤ 4 log3 T

(1−γ)3/2T
=: b.

Upper bound of quadratic variation. Now, let’s calculate the quadratic variation.

We first introduce some notations. For any k ∈ N, we denote Var(ξ) :=
(
E

[
‖ξ(s)‖2

])
s∈S

∈ R
S ,

Vark(ξ) :=
(
Ek

[
‖ξ(s)‖2

])
s∈S

∈ R
S for any random element ξ in MS .

For any ξ ∈ MS , we define its one-step update Cramér variation as σ(ξ) := Var

(
(T̂ − T )ξ

)
∈

R
S , where T̂ is a random operator and has the same distribution as T1.

For any x,y ∈ R
S , we say x ≤ y if x(s) ≤ y(s) for all s ∈ S . In this part, ‖x‖ :=

‖x‖∞ = maxs∈S |x(s)|, √x :=
(√

x(s)
)
s∈S

. And for any U ∈ R
S×S , ‖U‖ := ‖U‖∞ =

supx∈RS ,‖x‖=1 ‖Ux‖ = maxs∈S
∑

s′∈S |U(s, s′)|.
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We denote I ∈ R
S×S as the identity matrix, 1 ∈ R

S as the all-ones vector, and P := Pπ ∈ R
S×S ,

i.e., P (s, s′) := Pπ(s′|s) =∑a∈A π(a|s)P (s′|s, a).

With these notations, the quadratic variation is Wt :=
∑t

k=1 Vark−1 (ζk). To bound the quadratic
variationWt, we need to bound Vark−1 (ζk).

Lemma C.1.

Vark−1 (ζk) ≤ αkβ
(t)
k

t∏

i=k+1

[(1− αi)I + αi
√
γP ]σ(ηk−1).

Hence, the quadratic variationWt can be bounded as follow

Wt =

t∑

k=1

Vart−1 (ζk)

≤
t∑

k=1

αkβ
(t)
k

t∏

i=k+1

[(1− αi)I + αi
√
γP ]σ(ηk−1)

≤
t/2∑

k=1

αkβ
(t)
k

∥∥∥∥∥

t∏

i=k+1

[(1− αi)I + αi
√
γP ]

∥∥∥∥∥ ‖σ(ηk−1)‖1+

t∑

k=t/2+1

αkβ
(t)
k

t∏

i=k+1

[(1− αi)I + αi
√
γP ]σ(ηk−1)

≤
t/2∑

k=1

(
β
(t)
k

)2 1

1− γ
1+

(
max

k: t/2<k≤t
β
(t)
k

) t∑

k=t/2+1

αk

t∏

i=k+1

[(1− αi)I + αi
√
γP ]σ(ηk−1)

≤ 1

2(1− γ)T 3
1+

2 log3 T

(1−√
γ)T





t∑

k=t/2+1

αk

t∏

i=k+1

[(1− αi)I + αi
√
γP ]



 max

k: t/2<k≤t
σ(ηk−1)

≤ 1

2(1− γ)T 3
1+

4 log3 T

(1− γ)T
(I −√

γP )−1 max
k: t/2<k≤t

σ(ηk−1),

(35)
where in the fourth line, we used

αk

∥∥∥∥∥

t∏

i=k+1

[(1− αi)I + αi
√
γP ]

∥∥∥∥∥ ≤ αk

t∏

i=k+1

[(1− αi) + αi
√
γ] = β

(t)
k ,

and

‖σ(ηk−1)‖ ≤
∫ 1

1−γ

0

dx =
1

1− γ
.

In the last line, we used the fact that maxk: t/2≤k<t σ(ηk−1) ≥ 0 and the following lemma:

Lemma C.2. For any t ∈ N, (αi)i∈[t] ∈ [0, 1]t, the following inequality holds entry-wise:

t∑

k=t/2+1

αk

t∏

i=k+1

[I − αi (I −
√
γP )] ≤ (I −√

γP )−1. (36)

According to (35), we have the following deterministic upper bound for ‖Wt‖ = maxs∈SWt(s),

‖Wt‖ ≤ 1

2(1− γ)T 3
+

4 log3 T

(1− γ)T

∥∥(I −√
γP )−1

∥∥ max
k: t/2<k<≤t

‖σ(ηk−1)‖

≤ 1

2(1− γ)T 3
+

8 log3 T

(1− γ)3T

≤ 9 log3 T

(1− γ)3T

=: σ2.

(37)
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Let H =
⌈
2 log2

1
1−γ

⌉
, we have

σ2

2H
≤ 9 log3 T

(1− γ)T
. (38)

By applying Freedman’s inequality (Theorem A.2) and utilizing the union bound over s ∈ S , we
obtain with probability at least 1− δ, for all t ∈ [T ] and s ∈ S
(∥∥∥∥∥

t∑

k=1

ζk(s)

∥∥∥∥∥

)

s∈S

≤

√

8

(
Wt +

σ2

2H
1

)
log

8|S|T log 1
1−γ

δ
+

4

3
b log

8|S|T log 1
1−γ

δ
1

≤
√

16

(
Wt +

9 log3 T

(1− γ)T
1

)
log

|S|T
δ

+ 3b log
|S|T
δ

1

≤8

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)T

[
(I −√

γP )−1 max
k: t/2<k≤t

σ(ηk−1) + 3 · 1
]
+

12
(
log3 T

) (
log |S|T

δ

)

(1− γ)3/2T
1,

(39)

where we used log
8|S|T log 1

1−γ

δ ≤ 2 log |S|T
δ in the second line, which holds due to the choice of T .

The following lemmas are required for deriving the upper bound, which hold for both cases of NTD
and CTD.

Lemma C.3. For any t ∈ [T ],

σ(ηt)− σ(η) ≤ 4 ‖∆t‖W̄1
1.

Lemma C.4.

(I −√
γP )−1σ(η) ≤ 4

1− γ
1.

Combining the upper bound with the two lemmas, we get the desired conclusion
(∥∥∥∥∥

t∑

k=1

ζk(s)

∥∥∥∥∥

)

s∈S

≤8

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)T

[
4 max
k: t/2<k≤t

‖∆k−1‖W̄1
(I −√

γP )−11+
8

1− γ
1

]
+

12
(
log3 T

) (
log |S|T

δ

)

(1− γ)3/2T
1

≤22

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)2T

(
1 + max

k: t/2<k≤t
‖∆k−1‖W̄1

)
1+

12
(
log3 T

) (
log |S|T

δ

)

(1− γ)3/2T
1

≤34

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)2T

(
1 + max

k: t/2<k≤t
‖∆k−1‖W̄1

)
1,

(40)
where in the last line, we used that, excluding the constant term, the first term is larger than the

second term, given the choice of T ≥ C4 log3 T
ε2(1−γ)3 log

|S|T
δ .

C.4 Solve the Recurrence Relation

Theorem C.1. Suppose for all t ≥ T
c6 log T ,

‖∆t‖W̄1
≤ 35

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T

(
1 + max

k: t/2<k≤t
‖∆k−1‖W̄1

)
.
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Then there exists some large universal constant C7 > 0, such that

‖∆T ‖W̄1
≤ C7




√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
+

(
log3 T

) (
log |S|T

δ

)

(1− γ)3T


 .

Proof. For any k ≥ 0, we denote

uk := max

{
‖∆t‖W̄1

∣∣∣ 2k T

c6 log T
≤ t ≤ T

}
, (41)

for 0 ≤ k ≤ log2 (c6 log T ). We can see that ‖∆T ‖W̄1
≤ uk for any valid k. Hence, it suffices to

show the upper bound holds for uk for any valid k. It can be verified that u0 ≤ 1
1−γ , and for k ≥ 0

uk+1 ≤ 35

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
(1 + uk). (42)

We first show that once uk ≤ 1, the subsequent values of uk+l will also remain upper bounded by 1.
Namely, if uk ≤ 1 for some k ≥ 1, then

uk+1 ≤ 35

√√√√2
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
≤ 1, (43)

if T ≥ 2450 log3 T log
|S|T

δ

(1−γ)3 .

Let τ := inf {k : uk ≤ 1}, then for any k > τ , we have

uk ≤ 35

√√√√2
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
=: a. (44)

For k ≤ τ , we have uk ≥ 1 and thereby

uk+1 ≤ 35

√√√√2
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
uk = a

√
uk, (45)

i.e.,

log uk+1 − 2 log a ≤ 1

2
(log uk − 2 log a) . (46)

Apply it recursively, we have

log uk+1 ≤ 2 log a+

(
1

2

)k+1

(log u0 − 2 log a) , (47)

i.e.,

uk+1 ≤ a2
(u0

a2

)1/2k
= a2(1−1/2k)u

1/2k

0 ≤ a2(1−1/2k) 1

(1− γ)1/2k
. (48)

To sum up, for any k ≥ 0, uk+1 is always less than the sum of the upper bounds in cases of k > τ
and k ≤ τ ,

uk+1 ≤ a+ a2(1−1/2k) 1

(1− γ)1/2k
(49)

Note that, a2(1−1/2k) ≤ max {a,√a}, and if we take k ≥ c8 log log
1

1−γ for any constant c8, we

have 1

(1−γ)1/2k
= O(1). We can take the constant c8 small enough such that c8 log log

1
1−γ <

log2 (c6 log T ) (this can be done and c8 is universal since 1
1−γ = o(T )), and thereby we can find a

valid k⋆ ≥ c8 log log
1

1−γ + 1. Then

‖∆T ‖W̄1
≤ uk⋆ ≤ C7




√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)3T
+

(
log3 T

) (
log |S|T

δ

)

(1− γ)3T


 , (50)

which is the desired conclusion, and C7 is some large universal constant related to c8.
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C.5 Analysis of Corollaries 4.1 and 4.2

The difference in the proof compared to Section 5.2 arises in Lemma 5.2 when we control term (II).
Now we further bound the result in Lemma C.3 by the Cramér norm of the error term,

σ(ηt)− σ(η) ≤ 4 ‖∆t‖W̄1
1 ≤ 1√

1− γ
‖∆t‖1. (51)

In the same way, we can derive the following recurrence relation: with probability at least 1− δ, for
all t ≥ T

c6 log T

‖∆t‖ ≤ 35

√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)5/2T

(
1 + max

k: t/2<k≤t
‖∆k−1‖

)
. (52)

By repeating the reasoning of Theorem C.1, we can obtain the desired conclusion,

‖∆T ‖ ≤ C7




√√√√
(
log3 T

) (
log |S|T

δ

)

(1− γ)5/2T
+

(
log3 T

) (
log |S|T

δ

)

(1− γ)5/2T


 , (53)

which is less than ε if we take C4 ≥ 2C2
7 and T ≥ C4 log3 T

ε2(1−γ)5/2
log |S|T

δ . Here, C7 > 1 is a large

universal constant depending on c6.

C.6 Proof of Lemma C.1

Proof. We first introduce some notations. For any matrix of operators U ∈ L (M)
S×S

, we denote

U(s) = (U(s, s′))s′∈S ∈ L (M)
S

as the s-row of U . And for any ξ ∈ MS , we define the vector

inner product operation U(s)ξ :=
∑

s′∈S U(s, s′)ξ(s′) ∈ M.

We need the following lemma, which holds for both cases of NTD and CTD.

Lemma C.5. For any ν ∈ M, n ∈ N, (αi)i∈[n] ∈ [0, 1]n, let Un =
∏n

i=1 [(1− αi)I + αiT ],

Un =
∏n

i=1

[
(1− αi)I + αi

√
γP
]
, un =

∏n
i=1

[
(1− αi) + αi

√
γ
]

then for any s, s′ ∈ S , we
have

‖Un(s, s
′)ν‖2 ≤ unUn(s, s

′) ‖ν‖2 .

Utilizing this lemma, we get the following result. Recall that T̂ is a random operator and has the
same distribution as T1. Then, for any non-random ξ ∈ MS ,

E

[∥∥∥Un(s)(T̂ − T )ξ
∥∥∥
2
]

=E



∥∥∥∥∥
∑

s′∈S
Un(s, s

′)
[
(T̂ − T )ξ

]
(s′)

∥∥∥∥∥

2



=E



∥∥∥∥∥
∑

s′∈S
Un(s, s

′)
[
T̂ (s′)ξ − T (s′)ξ

]∥∥∥∥∥

2



=
∑

s′∈S
E

[∥∥∥Un(s, s
′)
[
T̂ (s′)ξ − T (s′)ξ

]∥∥∥
2
]

≤un

∑

s′∈S
Un(s, s

′)E

[∥∥∥T̂ (s′)ξ − T (s′)ξ
∥∥∥
2
]

=un

∑

s′∈S
Un(s, s

′)σ(ξ)(s′)

=unUn(s)σ(ξ),

(54)
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where we used different rows of T̂ are independent, and T̂ (s′)ξ is an unbiased estimator of T (s′)ξ ∈
M. Hence, Var

(
Un(T̂ − T )ξ

)
≤ unUnσ(ξ).

Now, we are ready to bound Vark−1 (ζk)

Vark−1 (ζk) = α2
kVark−1

(
t∏

i=k+1

[(1− αi)I + αiT ] (Tk − T ) ηk−1

)

≤ α2
k

t∏

i=k+1

[(1− αi) + αi
√
γ]

t∏

i=k+1

[(1− αi)I + αi
√
γP ]σ(ηk−1)

= αkβ
(t)
k

t∏

i=k+1

[(1− αi)I + αi
√
γP ]σ(ηk−1).

(55)

C.7 Proof of Lemma C.2

Proof.

t∑

k=t/2+1

αk

t∏

i=k+1

[(1− αi)I + αi
√
γP ]

=(I −√
γP )−1

t∑

k=t/2+1

αk(I −
√
γP )

t∏

i=k+1

[(1− αi)I + αi
√
γP ]

=(I −√
γP )−1

t∑

k=t/2+1

{
t∏

i=k+1

[(1− αi)I + αi
√
γP ]−

t∏

i=k

[(1− αi)I + αi
√
γP ]

}

=(I −√
γP )−1 − (I −√

γP )−1
t∏

i=t/2+1

[(1− αi)I + αi
√
γP ]

≤(I −√
γP )−1,

(56)

where the inequality holds entry-wise since we can verify that all entries of (I − √
γP )−1 =

∑∞
k=0

(√
γP
)k

and (1− αi)I + αi
√
γP are non-negative.

C.8 Proof of Lemma C.3

Proof. For any s ∈ S ,

σ(ηt)(s)− σ(η)(s)

=

∫ 1
1−γ

0

{
E

[
F 2

(T̂ ηt)(s)
(x)

]
− F 2

(T ηt)(s)
(x)− E

[
F 2

(T̂ η)(s)
(x)

]
+ F 2

(T η)(s)(x)

}
dx

=

∫ 1
1−γ

0

{
E

[
F 2

(T̂ ηt)(s)
(x)− F 2

(T̂ η)(s)
(x)

]
+ F 2

(T η)(s)(x)− F 2
(T ηt)(s)

(x)

}
dx

=

∫ 1
1−γ

0

{
E

[(
F(T̂ ηt)(s)(x)− F(T̂ η)(s)(x)

)(
F(T̂ ηt)(s)(x) + F(T̂ η)(s)(x)

)]

+
(
F(T η)(s)(x)− F(T ηt)(s)(x)

) (
F(T η)(s)(x) + F(T ηt)(s)(x)

)}
dx

≤2

∫ 1
1−γ

0

{
E

[∣∣∣F(T̂ ηt)(s)(x)− F(T̂ η)(s)(x)
∣∣∣
]
+
∣∣F(T η)(s)(x)− F(T ηt)(s)(x)

∣∣
}
dx

=2

(
E

[∥∥∥T̂ (ηt − η) (s)
∥∥∥
W1

]
+ ‖T (ηt − η) (s)‖W1

)
.

(57)
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In the case of NTD, T and T̂ are γ-contraction w.r.t. the supreme 1-Wasserstein metric, hence

σ(ηt)(s)− σ(η)(s) ≤ 2

(
E

[∥∥∥T̂ (ηt − η) (s)
∥∥∥
W1

]
+ ‖T (ηt − η) (s)‖W1

)

≤ 4γ ‖ηt − η‖W̄1

≤ 4 ‖∆t‖W̄1
.

(58)

In the case of CTD, if we can show ΠK is non-expansive w.r.t. 1-Wasserstein metric, the conclusion

still holds. For any x, y ∈
[
0, 1

1−γ

]
such that x < y, we denote x ∈ [xk, xk+1) and y ∈ [xl, xl+1),

then k ≤ l, by the definition of ΠK , we have

ΠK(δx) =
xk+1 − y

ιK
δxk

+
y − xk

ιK
δxk+1

, (59)

ΠK(δy) =
xl+1 − y

ιK
δxl

+
y − xl

ιK
δxl+1

. (60)

If k = l, we can check that W1 (ΠKδx,ΠKδy) = ιK
y−x
ιK

= y − x. If k < l, we have

W1 (ΠKδx,ΠKδy) ≤ W1 (ΠKδx, xk+1) +W1 (xk+1, xl) +W1 (xl,ΠKδy) = (xk+1 − x) + (xl −
xk+1) + (y − xxl

) = y − x. Hence, for any ν1, ν2 ∈ P and for any transport plan κ ∈ Γ(ν1, ν2),
the previous results tell us the cost of the transport plan ΠKκ ∈ Γ (ΠKν1,ΠKν2) induced by ΠK

is no greater than the cost of κ. Consequently, W1 (ΠKν1,ΠKν2) ≤ W1(ν1, ν2), i.e., ΠK is non-
expansive w.r.t. 1-Wasserstein metric, which is desired.

C.9 Proof of Lemma C.4

Proof. Firstly, we show that for any v ≥ 0, we have
∥∥(I −√

γP )−1v
∥∥ ≤ 2

∥∥(I − γP )−1v
∥∥

∥∥(I −√
γP )−1v

∥∥ =
∥∥(I −√

γP )−1(I − γP )(I − γP )−1v
∥∥

=
∥∥(I −√

γP )−1 [(1−√
γ)I +

√
γ(I −√

γP )] (I − γP )−1v
∥∥

=
∥∥[(1−√

γ)(I −√
γP )−1 +

√
γI
]
(I − γP )−1v

∥∥

≤ (1−√
γ)
∥∥(I −√

γP )−1(I − γP )−1v
∥∥+√

γ
∥∥(I − γP )−1v

∥∥

≤
(
1−√

γ

1−√
γ
+
√
γ

)∥∥(I − γP )−1v
∥∥

≤ 2
∥∥(I − γP )−1v

∥∥ .

(61)

In the case of NTD, by Corollary D.1, we have

∥∥(I − γP )−1σ (η)
∥∥ ≤ 1

1− γ
, (62)

In the case of CTD, by Corollary 5.12 in [Rowland et al., 2024b], we have

∥∥(I − γP )−1σ (η)
∥∥ ≤ 2

1− γ
, (63)

given K > 4
1−γ .

C.10 Proof of Lemma C.5

Proof. We proof this result by induction. For n = 0, we have U0 = I, U0 = I , u0 = 1, thereby the
inequality holds trivially. Suppose the inequality holds true for n − 1. To prove that the inequality
holds for n, it is sufficient to show that, for any µ ∈ M,

‖[(1− αn)δs,s′ + αnT (s, s′)]µ‖2 ≤ [(1− αn) + αn
√
γ] [(1− αn)δs,s′ + αn

√
γP (s, s′)] ‖µ‖2 ,

where δs,s′ = 1 if s = s′, and 0 otherwise.
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LHS can be bounded as follow

‖[(1− αn)δs,s′ + αnT (s, s′)]µ‖2

=(1− αn)
2δs,s′ ‖µ‖2 + 2(1− αn)αnδs,s′ 〈µ, T (s, s′)µ〉+ α2

n ‖T (s, s′)µ‖2

≤(1− αn)
2δs,s′ ‖µ‖2 + 2(1− αn)αnδs,s′ ‖µ‖ ‖T (s, s′)µ‖+ α2

n ‖T (s, s′)µ‖2 ,
(64)

where we used Cauchy-Schwarz inequality. We need to give an upper bound for ‖T (s, s′)µ‖2.

Note that (ΠKT π) (s, s′) = ΠK (T π(s, s′)) and ‖ΠK‖ = 1, we only need to consider the case of
NTD, by the definition of T (s, s′), we have

‖T (s, s′)µ‖2 =

∫ 1
1−γ

0

[
∑

a∈A
π(a|s)P (s′|s, a)

∫ 1

0

Fµ

(
x− r

γ

)
PR(dr|s, a)

]2
dx

= P (s, s′)2
∫ 1

1−γ

0

[
∑

a∈A

π(a|s)P (s′|s, a)
P (s, s′)

∫ 1

0

Fµ

(
x− r

γ

)
PR(dr|s, a)

]2
dx

= P (s, s′)2
∫ 1

1−γ

0

{
Ea∼π(·|s),r∼PR(·|s,a)

[
Fµ

(
x− r

γ

) ∣∣∣s′
]}2

dx

≤ P (s, s′)2Ea∼π(·|s),r∼PR(·|s,a)

{∫ 1
1−γ

0

[
Fµ

(
x− r

γ

)]2
dx
∣∣∣s′
}

= γP (s, s′)2 ‖µ‖2 ,

(65)

where we used Jensen’s inequality and Fubini’s theorem. Substitute it back to the upper bound,

‖[(1− αn)δs,s′ + αnT (s, s′)]µ‖2

≤(1− αn)
2δs,s′ ‖µ‖2 + 2(1− αn)αnδs,s′ ‖µ‖ ‖T (s, s′)µ‖+ α2

n ‖T (s, s′)µ‖2

≤
[
(1− αn)

2δs,s′ + 2(1− αn)αnδs,s′
√
γP (s, s′) + α2

nγP (s, s′)2
]
‖µ‖2

=
[
(1− αn)

2δs,s′ + αn
√
γP (s, s′)

]2 ‖µ‖2

≤ [(1− αn) + αn
√
γ] [(1− αn)δs,s′ + αn

√
γP (s, s′)] ‖µ‖2 ,

(66)

which is desired.

D Stochastic Distributional Bellman Equation and Operator

In this section, we use the same notations as in Appendix C and only consider the NTD setting.
Inspired by stochastic categorical CDF Bellman operator introduced in [Rowland et al., 2024b], we
introduce stochastic distributional Bellman operator T : ∆

(
PS) → ∆

(
PS) to derive an upper

bound for
∥∥(I − γP )−1σ(η)

∥∥ in the case of NTD. For any φ ∈ ∆
(
PS), we denote ηφ be the

random element in PS with law φ.

T φ := Law
(
T̂ ηφ

)
, (67)

where (T̂ ηφ)(ω) := (T̂ )(ω)(ηφ)(ω) ∈ PS for any ω ∈ Ω, Ω is the corresponding probability

space, and T̂ is independent of ηφ. In this part, T̂ does not consist of ΠK since we only consider
the NTD setting.

We consider the 1-Wasserstein metric W1 on ∆
(
PS), the space of all probability measures on the

space
(
PS , ℓ̄2

)
. Since

(
PS , ℓ̄2

)
is Polish (complete and separable), the space

(
∆
(
PS) ,W1

)
is

also Polish (Theorem 6.18 in [Villani et al., 2009]).

Proposition D.1. The stochastic distributional Bellman operator T is a
√
γ-contraction on

∆
(
PS), i.e., for any φ,φ′ ∈ ∆

(
PS), we have

W1 (T φ,T φ′) ≤ √
γW1 (φ,φ

′) .
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Proof. Let κ⋆ ∈ Γ (φ,φ′) be the optimal coupling between φ and φ′. The existence of κ⋆ is
guaranteed by Theorem 4.1 in [Villani et al., 2009]. And let the random element ξ = (ξ1, ξ2) in(
PS)2 has the law κ⋆, where ξ1 and ξ2 are both random elements in PS . We denote T κ⋆ :=

Law
[(

T̂ ξ1, T̂ ξ2
)]

∈ Γ (T φ,T φ′).

W1 (T φ,T φ′) = inf
κ∈Γ(T φ,T φ′)

∫

(PS)2
ℓ̄2 (ξ, ξ

′)κ (dξ, dξ′)

≤
∫

(PS)2
ℓ̄2 (ξ, ξ

′)T κ⋆ (dξ, dξ′)

= E

[
ℓ̄2

(
T̂ ξ1, T̂ ξ2

)]

≤ √
γE
[
ℓ̄2 (ξ1, ξ2)

]

=
√
γ

∫

(PS)2
ℓ̄2 (ξ, ξ

′)κ⋆ (dξ, dξ′)

=
√
γ inf
κ∈Γ(φ,φ′)

∫

(PS)2
ℓ̄2 (ξ, ξ

′)κ (dξ, dξ′)

=
√
γW1 (φ,φ

′) .

(68)

By the proposition and contraction mapping theorem, there exists a unique fixed point of T , we
denote ψ ∈ ∆

(
PS) as the fixed point. Hence, the stochastic distributional Bellman equation reads

ψ = T ψ. (69)

We denote ηψ as the random element in P with law ψ, then T̂ ηψ and ηψ have the same law. As
shown in the following proposition, ηψ can be regarded as a noisy version of η.

Proposition D.2.

E [ηψ] = η,

where the expectation is regarded as the Bochner integral in the space of all finite measures on PS ,
which is a normed linear space equipped with Cramér metric as its norm.

Proof.

E [ηψ] = E

[
T̂ ηψ

]

= E

{
E

[
T̂ ηψ

∣∣∣ηψ
]}

= E [T ηψ]
= T E [ηψ] ,

(70)

where we used T̂ is independent of ηψ . Since E [ηψ] is the fixed point of T , we have E [ηψ] =
η.

Based on the concepts of T and ψ, we can obtain the following second order distributional
Bellman equation, which is similar to the classic second-order Bellman equation (Lemma 7 in
[Gheshlaghi Azar et al., 2013]).

Recall the one-step Cramér variation σ(η) =

(
E

[∥∥∥
(
T̂ η
)
(s)− η(s)

∥∥∥
2
])

s∈S
∈ R

S used in the

NTD setting. We denote σ := σ(η) for simplicity, and Σ :=
(
E

[
‖ηψ(s)− η(s)‖2

])
s∈S

∈ R
S .

Proposition D.3 (Second order distributional Bellman equation).

Σ = σ + γPΣ.
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Proof. For any s ∈ S ,

Σ(s) = E

[
‖ηψ(s)− η(s)‖2

]

= E

[∥∥∥
(
T̂ ηψ

)
(s)− η(s)

∥∥∥
2
]

= E

[∥∥∥
(
T̂ ηψ

)
(s)−

(
T̂ η
)
(s) +

(
T̂ η
)
(s)− η(s)

∥∥∥
2
]

= E

[∥∥∥
(
T̂ η
)
(s)− η(s)

∥∥∥
2
]
+ E

[∥∥∥
(
T̂ ηψ

)
(s)−

(
T̂ η
)
(s)
∥∥∥
2
]
,

(71)

where the last equality holds since the cross term is zero as below

E

[〈(
T̂ η
)
(s)− η(s),

(
T̂ ηψ

)
(s)−

(
T̂ η
)
(s)
〉]

=E

{
E

[〈(
T̂ η
)
(s)− η(s),

(
T̂ ηψ

)
(s)−

(
T̂ η
)
(s)
〉 ∣∣∣T̂

]}

=E

{〈(
T̂ η
)
(s)− η(s),E

[(
T̂ ηψ

)
(s)
∣∣∣T̂
]
−
(
T̂ η
)
(s)
〉}

=E

[〈(
T̂ η
)
(s)− η(s),0

〉]

=0.

(72)

The first term in (71) is σ(s), we need to deal with the second term.

E

[∥∥∥
(
T̂ ηψ

)
(s)−

(
T̂ η
)
(s)
∥∥∥
2
]

=E

{
E

[∥∥∥
(
T̂ ηψ

)
(s)−

(
T̂ η
)
(s)
∥∥∥
2 ∣∣∣ηψ

]}

=E

{
Ea(s)∼π(·|s),s′(s)∼P (·|s,a(s)),r(s)∼PR(·|s,a(s))

[∫ 1
1−γ

0

(
F(ηψ)(s′(s))

(
x− r

γ

)
− Fη(s′(s))

(
x− r

γ

))2

dx

∣∣∣∣∣ηψ
]}

=γ
∑

s′∈S
E

[
‖ηψ(s′)− η(s′)‖2

]∑

a∈A
π(a|s)P (s′|s, a)

=γ
∑

s′∈S
P (s, s′)Σ(s′).

(73)
Put these together, and we can arrive at the conclusion.

Now, we can derive a tighter upper bound for
∥∥(I − γP )−1σ(η)

∥∥.

Corollary D.1.

∥∥(I − γP )−1σ(η)
∥∥ ≤

∥∥(I − γP )−1σ
∥∥ = ‖Σ‖ ≤ 1

1− γ
.

Proof. Note that all entries of (I−γP )−1 =
∑∞

k=0 (γP )
k

are positive, thereby (I−γP )−1σ(η) ≤
(I − γP )−1σ = Σ, and Σ(s) = E

[
‖ηψ(s)− η(s)‖2

]
≤
∫ 1

1−γ

0 dx = 1
1−γ for any s ∈ S .

E Other Technical Lemmas

Lemma E.1 (Basic inequalities for metrics on the space of probability measures). For any µ, ν ∈ P ,

we have W1(µ, ν) ≤ 1√
1−γ

ℓ2(µ, ν) and Wp(µ, ν) ≤ 1

(1−γ)
1− 1

p
W

1
p

1 (µ, ν).
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Proof. By Cauchy-Schwarz inequality,

W1(µ, ν) =

∫ 1
1−γ

0

|Fµ(x)− Fν(x)|dx

≤

√∫ 1
1−γ

0

12dx

√∫ 1
1−γ

0

|Fµ(x)− Fν(x)|2dx

=
1√
1− γ

ℓ2(µ, ν).

(74)

And

Wp(µ, ν) =

(
inf

κ∈Γ(µ,ν)

∫

[0, 1
1−γ ]

2
|x− y|p κ(dx, dy)

)1/p

≤ 1

(1− γ)1−
1
p

(
inf

κ∈Γ(µ,ν)

∫

[0, 1
1−γ ]

2
|x− y|κ(dx, dy)

)1/p

=
1

(1− γ)1−
1
p

W
1
p

1 (µ, ν).

(75)

Lemma E.2 (Range of ηπt ). Suppose that αt ∈ [0, 1] for all t ≥ 0. Assume that ηπ0 ∈ PS , then we
have, for all t ≥ 0, ηπt ∈ PS in the case of NTD. Similarly, assume that ηπ0 ∈ PS

K , then we have,

for all t ≥ 0, ηπt ∈ PS
K in the case of CTD.

Proof. We will only prove the case of NTD, and the proof for CTD is similar by utilizing the property
of the projection operator ΠK : PS → PS

K . We prove the result by induction. It is trivial that

ηπt ∈ PS for t = 0. Suppose that ηπt−1 ∈ PS , recall the updating scheme of NTD

ηπt = (1− αt)η
π
t−1 + αtT π

t ηπt−1. (76)

It is evident that PS is a convex set, considering that PS is a subset of the product signed measure
space, which is a linear space. Therefore, we only need to show that T π

t ηπt−1 ∈ PS , which trivially

holds since T π
t is a random operator mapping from PS to PS , and ηπt−1 ∈ PS . By applying the

induction argument, we can arrive at the conclusion.
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(c) If the contribution is a new model (e.g., a large language model), then there should
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Answer: [NA]
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algorithms, it does not include experiments.
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6. Experimental Setting/Details
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Justification: Given that our paper focuses on the theoretical analysis of existing popular
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
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Answer: [NA]

Justification: Given that our paper focuses on the theoretical analysis of existing popular
algorithms, it does not include experiments.
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• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
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eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.

33

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper only focuses on theory.
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• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
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• We recognize that providing effective safeguards is challenging, and many papers do
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12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the pack-
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Question: Are new assets introduced in the paper well documented and is the documenta-
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
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tion, or other labor should be paid at least the minimum wage in the country of the
data collector.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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